Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Nano Res ; : 1-8, 2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-20239241

ABSTRACT

The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has necessitated rapid, easy-to-use, and accurate diagnostic methods to monitor the virus infection. Herein, a ratiometric fluorescence enzyme-linked immunosorbent assay (ELISA) was developed using Si-fluorescein isothiocyanate nanoparticles (FITC NPs) for detecting SARS-CoV-2 nucleocapsid (N) protein. Si-FITC NPs were prepared by a one-pot hydrothermal method using 3-aminopropyl triethoxysilane (APTES)-FITC as the Si source. This method did not need post-modification and avoided the reduction in quantum yield and stability. The p-nitrophenyl (pNP) produced by the alkaline phosphatase (ALP)-mediated hydrolysis of p-nitrophenyl phosphate (pNPP) could quench Si fluorescence in Si-FITC NPs via the inner filter effect. In ELISA, an immunocomplex was formed by the recognition of capture antibody/N protein/reporter antibody. ALP-linked secondary antibody bound to the reporter antibody and induced pNPP hydrolysis to specifically quench Si fluorescence in Si-FITC NPs. The change in fluorescence intensity ratio could be used for detecting N protein, with a wide linearity range (0.01-10.0 and 50-300 ng/mL) and low detection limit (0.002 ng/mL). The concentration of spiked SARS-CoV-2 N protein could be determined accurately in human serum. Moreover, this proposed method can accurately distinguish coronavirus disease 2019 (COVID-19) and non-COVID-19 patient samples. Therefore, this simple, sensitive, and accurate method can be applied for the early diagnosis of SARS-CoV-2 virus infection. Electronic Supplementary Material: Supplementary material (characterization of Si-FITC NPs (FTIR spectrum, XRD spectra, and synchronous fluorescence spectra); condition optimization of ALP response (fluorescence intensity ratio change); mechanism investigation of ALP response (fluorescence lifetime decay curves and UV-vis absorption spectra); detection of N protein using commercial ELISA Kit; analytical performance of assays for ALP detection or SARS-CoV-2 N protein detection; and determination results of SARS-CoV-2 N protein in human serum) is available in the online version of this article at 10.1007/s12274-022-4740-5.

3.
Risk Manag Healthc Policy ; 16: 327-335, 2023.
Article in English | MEDLINE | ID: covidwho-2277205

ABSTRACT

Objective: The impact of COVID-19 continues to this day, there are many disputes about how medical students should be managed and diverse arrangements were adopted by medical schools around all over the world. The purpose of this study was to discuss the risks and benefits of medical student participation in healthcare in the context of COVID-19. Methods: An online cross-sectional survey was distributed to 300 Medical students undergoing standardized training program (STP) in China-Japan Union Hospital of Jilin University. The survey included questions about basic demographic characteristics, roles and mental state of interns during the pandemic, comments on the University's management of medical students. Data were processed using SPSS 25.0 statistical analysis software, the comparison between two groups of data was performed using t-test; the non-normally distributed variables were analyzed using Mann-Whitney U-test, differences between groups were compared using chi-square test for analysis. p < 0.05 was considered statistically significant. Results: A total of 191 students completed the survey (response rate 63.67%). The epidemic had a significant psychological impact on students, but most of them believed that participation in clinical work under voluntary, precise protective measures and strict supervision were benefit for their future. Older, married, female, and salaried students are more willing to engage in pandemic-related activities. The biggest challenge of working under the pandemic focused on high working pressure and insufficient protection, the biggest harvest was getting knowledge and accumulating experience. Conclusion: Circumstances, cultures, outbreaks and strategies for coping with COVID-19 varied around the world. Medical students do not need to be overprotected, participation in pandemic work in an optimized system is acceptable and beneficial to their career plan. Medical education should focus on improving the social status of infectious diseases and cultivating future doctors with awareness of epidemic prevention and control.

4.
Nano research ; : 1-8, 2022.
Article in English | EuropePMC | ID: covidwho-1989784

ABSTRACT

The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has necessitated rapid, easy-to-use, and accurate diagnostic methods to monitor the virus infection. Herein, a ratiometric fluorescence enzyme-linked immunosorbent assay (ELISA) was developed using Si-fluorescein isothiocyanate nanoparticles (FITC NPs) for detecting SARS-CoV-2 nucleocapsid (N) protein. Si-FITC NPs were prepared by a one-pot hydrothermal method using 3-aminopropyl triethoxysilane (APTES)-FITC as the Si source. This method did not need post-modification and avoided the reduction in quantum yield and stability. The p-nitrophenyl (pNP) produced by the alkaline phosphatase (ALP)-mediated hydrolysis of p-nitrophenyl phosphate (pNPP) could quench Si fluorescence in Si-FITC NPs via the inner filter effect. In ELISA, an immunocomplex was formed by the recognition of capture antibody/N protein/reporter antibody. ALP-linked secondary antibody bound to the reporter antibody and induced pNPP hydrolysis to specifically quench Si fluorescence in Si-FITC NPs. The change in fluorescence intensity ratio could be used for detecting N protein, with a wide linearity range (0.01–10.0 and 50–300 ng/mL) and low detection limit (0.002 ng/mL). The concentration of spiked SARS-CoV-2 N protein could be determined accurately in human serum. Moreover, this proposed method can accurately distinguish coronavirus disease 2019 (COVID-19) and non-COVID-19 patient samples. Therefore, this simple, sensitive, and accurate method can be applied for the early diagnosis of SARS-CoV-2 virus infection. Electronic Supplementary Material Supplementary material (characterization of Si-FITC NPs (FTIR spectrum, XRD spectra, and synchronous fluorescence spectra);condition optimization of ALP response (fluorescence intensity ratio change);mechanism investigation of ALP response (fluorescence lifetime decay curves and UV—vis absorption spectra);detection of N protein using commercial ELISA Kit;analytical performance of assays for ALP detection or SARS-CoV-2 N protein detection;and determination results of SARS-CoV-2 N protein in human serum) is available in the online version of this article at 10.1007/s12274-022-4740-5.

5.
Sens Actuators B Chem ; 369: 132306, 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-1915000

ABSTRACT

The continuing global spread of Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, has led to an unprecedented global health crisis. Effective and affordable methods are needed to diagnose SARS-CoV-2 infection. In this work, a ratiometric fluorescence probe, Si-Mn:ZnSe nanoparticles, was constructed through the electrostatic interaction between Si dots and Mn:ZnSe QDs, and the fluorescence of Mn:ZnSe QDs has a specifical response to H2O2. An immunocomplex was formed by the recognition of capture antibody/spike (S) protein/spike neutralizing antibody/biotinylated second antibody/streptavidin/biotinylated catalase (CAT). In the presence of S protein, CAT effectively catalyzed the decomposition of H2O2 in the system, and the fluorescence of Mn:ZnSe QDs was not specifically quenched. Based on this principle, a ratiometric immunoassay of SARS-CoV-2 S protein was established. The sensitivity of the proposed ELISA method was comparable to that of the commercial kit. In addition, this method can effectively distinguish the pseudo-SARS-CoV-2 virus and other pseudovirus. Therefore, this method provided a reliable and potential direction for diagnosing SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL